3.21.77 \(\int \frac {1}{(\frac {b e}{2 c}+e x) \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=56 \[ \frac {2 \sqrt {c} \tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{e \sqrt {b^2-4 a c}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {688, 205} \begin {gather*} \frac {2 \sqrt {c} \tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{e \sqrt {b^2-4 a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(((b*e)/(2*c) + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[c]*ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]])/(Sqrt[b^2 - 4*a*c]*e)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 688

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[4*c, Subst[Int[1/(b^2*e
 - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (\frac {b e}{2 c}+e x\right ) \sqrt {a+b x+c x^2}} \, dx &=(4 c) \operatorname {Subst}\left (\int \frac {1}{b^2 e-4 a c e+4 c e x^2} \, dx,x,\sqrt {a+b x+c x^2}\right )\\ &=\frac {2 \sqrt {c} \tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 55, normalized size = 0.98 \begin {gather*} \frac {2 \sqrt {c} \tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+x (b+c x)}}{\sqrt {b^2-4 a c}}\right )}{e \sqrt {b^2-4 a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(((b*e)/(2*c) + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[c]*ArcTan[(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])/Sqrt[b^2 - 4*a*c]])/(Sqrt[b^2 - 4*a*c]*e)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.34, size = 87, normalized size = 1.55 \begin {gather*} -\frac {4 \sqrt {c} \tan ^{-1}\left (-\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+\frac {2 c x}{\sqrt {b^2-4 a c}}+\frac {b}{\sqrt {b^2-4 a c}}\right )}{e \sqrt {b^2-4 a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(((b*e)/(2*c) + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-4*Sqrt[c]*ArcTan[b/Sqrt[b^2 - 4*a*c] + (2*c*x)/Sqrt[b^2 - 4*a*c] - (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^
2 - 4*a*c]])/(Sqrt[b^2 - 4*a*c]*e)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 175, normalized size = 3.12 \begin {gather*} \left [\frac {\sqrt {-\frac {c}{b^{2} - 4 \, a c}} \log \left (-\frac {4 \, c^{2} x^{2} + 4 \, b c x - b^{2} + 8 \, a c + 4 \, \sqrt {c x^{2} + b x + a} {\left (b^{2} - 4 \, a c\right )} \sqrt {-\frac {c}{b^{2} - 4 \, a c}}}{4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}\right )}{e}, \frac {2 \, \sqrt {\frac {c}{b^{2} - 4 \, a c}} \arctan \left (-\frac {\sqrt {c x^{2} + b x + a} {\left (b^{2} - 4 \, a c\right )} \sqrt {\frac {c}{b^{2} - 4 \, a c}}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right )}{e}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/2*b*e/c+e*x)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[sqrt(-c/(b^2 - 4*a*c))*log(-(4*c^2*x^2 + 4*b*c*x - b^2 + 8*a*c + 4*sqrt(c*x^2 + b*x + a)*(b^2 - 4*a*c)*sqrt(-
c/(b^2 - 4*a*c)))/(4*c^2*x^2 + 4*b*c*x + b^2))/e, 2*sqrt(c/(b^2 - 4*a*c))*arctan(-1/2*sqrt(c*x^2 + b*x + a)*(b
^2 - 4*a*c)*sqrt(c/(b^2 - 4*a*c))/(c^2*x^2 + b*c*x + a*c))/e]

________________________________________________________________________________________

giac [A]  time = 0.24, size = 65, normalized size = 1.16 \begin {gather*} \frac {4 \, c \arctan \left (-\frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} c + b \sqrt {c}}{\sqrt {b^{2} c - 4 \, a c^{2}}}\right ) e^{\left (-1\right )}}{\sqrt {b^{2} c - 4 \, a c^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/2*b*e/c+e*x)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

4*c*arctan(-(2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*c + b*sqrt(c))/sqrt(b^2*c - 4*a*c^2))*e^(-1)/sqrt(b^2*c - 4
*a*c^2)

________________________________________________________________________________________

maple [B]  time = 0.11, size = 98, normalized size = 1.75 \begin {gather*} -\frac {2 \ln \left (\frac {\frac {4 a c -b^{2}}{2 c}+\frac {\sqrt {\frac {4 a c -b^{2}}{c}}\, \sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}}{x +\frac {b}{2 c}}\right )}{\sqrt {\frac {4 a c -b^{2}}{c}}\, e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1/2*b/c*e+e*x)/(c*x^2+b*x+a)^(1/2),x)

[Out]

-2/e/((4*a*c-b^2)/c)^(1/2)*ln((1/2*(4*a*c-b^2)/c+1/2*((4*a*c-b^2)/c)^(1/2)*(4*(x+1/2*b/c)^2*c+(4*a*c-b^2)/c)^(
1/2))/(x+1/2*b/c))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/2*b*e/c+e*x)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\left (e\,x+\frac {b\,e}{2\,c}\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*x + (b*e)/(2*c))*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((e*x + (b*e)/(2*c))*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2 c \int \frac {1}{b \sqrt {a + b x + c x^{2}} + 2 c x \sqrt {a + b x + c x^{2}}}\, dx}{e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/2*b*e/c+e*x)/(c*x**2+b*x+a)**(1/2),x)

[Out]

2*c*Integral(1/(b*sqrt(a + b*x + c*x**2) + 2*c*x*sqrt(a + b*x + c*x**2)), x)/e

________________________________________________________________________________________